Skip to main content

Marine plastic pollution poses a significant threat to our oceans and marine life, necessitating innovative solutions to address the growing crisis. In response to the challenges faced by decision-makers in selecting effective cleanup technologies, a recent study has introduced a groundbreaking framework. Developed as part of the EU CLAIM (Cleaning Litter by developing and Applying Innovative Methods) project, this method offers a systematic approach to evaluating technologies aimed at reducing the entry of both microplastics and macroplastics into the sea.

Decision-makers grappling with marine pollution must navigate a complex landscape of diverse stakeholders, including plastic producers, tourism and fishing industries, environmental groups, consumers, and governments. Balancing the interests of these groups while effectively addressing the pollution problem requires a comprehensive and objective decision-making process.

The CLAIM Framework:

The EU CLAIM project focuses on attaining Good Environmental Status (GES) for European seas, aligning with the objectives of the EU Marine Strategy Framework Directive (MSFD). The newly developed framework employs a multi-criteria decision analysis (MCDA), systematically assessing cleanup technologies based on four key criteria: annual costs, reduced exposure of Natura 2000 areas, reduction in plastic pollution at aquaculture sites, and reduction in plastic pollution at cetacean critical habitats.

To illustrate the framework’s effectiveness, researchers applied it to the Mediterranean Sea, evaluating two technologies: a floating barrier for macroplastics and a filtering system for microplastics. The MCDA approach involved consulting experts from academia, industry, and policy to determine criteria weights, ensuring a balanced evaluation.

For macroplastics, the study suggests that a smaller number of installations (40–120) with higher removal rates (50–75%) is more effective. This strategic approach targets the most polluting rivers responsible for the majority of macroplastic entry into the Mediterranean. Conversely, for microplastics, a larger number of sites (240–400) with lower removal rates (25–50%) is recommended, considering the even distribution of waste-water treatment plants along the coast.

The study underscores the significant cost disparity between managing microplastics and macroplastics. Managing microplastics is approximately 11 times more expensive than dealing with macroplastics. This cost factor emphasizes the need for efficient and cost-effective technologies, especially when striving to meet ambitious targets such as those set by the EU Action Plan Towards Zero Pollution.

Supporting EU Goals:

The researchers highlight that this method aligns with the EU Action Plan’s goals, aiming for a 50% reduction in plastic litter at sea and a 30% reduction in released microplastics by 2030. Additionally, the proposed framework could complement the European Commission’s revised Urban Wastewater Treatment Directive, which advocates extra measures for the removal of micro-pollutants, including microplastics, from urban wastewater.

The innovative framework presented in the CLAIM project offers a valuable tool for decision-makers striving to address marine plastic pollution effectively. By considering both socio-economic and environmental impacts, and accounting for diverse stakeholder interests, this method contributes to informed decision-making in selecting the most suitable cleanup technologies. As the world collectively works towards cleaner oceans, such frameworks play a crucial role in steering us toward sustainable solutions.

Source: Directorate-General for Environment
Featured image credit: rawpixel.com | Freepik

Image underwater: green and brown grass under blue sky during daytime
Projected loss of brown macroalgae and seagrasses with global environmental changeClimateScience

Projected loss of brown macroalgae and seagrasses with global environmental change

By University of Helsinki Researchers predict that climate change will drive a substantial redistribution of brown seaweeds and seagrasses at the global scale. The projected…
SourceSourceJune 28, 2024 Full article
Night-time heat significantly increases the risk of strokeClimateScience

Night-time heat significantly increases the risk of stroke

By Helmholtz Munich In a recent study, researchers from Helmholtz Munich and the Augsburg University Hospital show that nocturnal heat significantly increases the risk of…
SourceSourceMay 22, 2024 Full article
Virus | bacteria illustrtion
Scientists warn of potential pandemic as Arctic zombie viruses resurface in SiberiaScienceNews

Scientists warn of potential pandemic as Arctic zombie viruses resurface in Siberia

In a chilling development, scientists are sounding the alarm about the reemergence of ancient viruses from thawing permafrost in Siberia, raising fears of a potentially…
Muser NewsDeskMuser NewsDeskJanuary 22, 2024 Full article