Skip to main content

An international team of scientists has uncovered the intricate patterns of tipping points within the Atlantic’s current system. This discovery challenges conventional knowledge, suggesting that the climate system’s stability is far more complex and unpredictable than previously assumed.

Published in Science Advances, the study, led by the Niels Bohr Institute at the University of Copenhagen and featuring mathematicians from the University of Leicester, sheds light on the dynamics of the Atlantic meridional overturning circulation (AMOC), a crucial component of the global climate system.

Contrary to the simplistic notion of ‘on-off’ states, the researchers found that the AMOC’s stability involves a multifaceted interplay of various states, each with its own implications for regional and global climates. These transitions between states could potentially trigger major climatic shifts, with ramifications extending far beyond the North Atlantic region.

Professor Valerio Lucarini from the University of Leicester School of Mathematical and Computer Science highlighted the complexity of the AMOC’s behavior, likening it to a tower of Jenga blocks, where minor transitions could unexpectedly lead to significant upheavals. “Early warning signals might be unable to distinguish the degree of severity of the ensuing tipping points,” he explained, emphasizing the challenges of predicting the system’s behavior.

The AMOC plays a pivotal role in regulating climate patterns by transporting heat from low to high latitudes in the northern Atlantic. Any disruption to this circulation could have profound consequences, including relative cooling in regions such as northern and western Europe.

Lucarini emphasized the necessity of adopting a comprehensive approach to understanding climate complexity, incorporating high-resolution models, rigorous statistical analysis, and observational evidence. “There is no shortcut, no free lunch in our understanding of climate, but we are learning a lot from it,” he noted.

The study’s findings offer a new perspective on climate dynamics, highlighting the need for a holistic understanding of the Earth’s complex systems. As scientists continue to unravel the mysteries of the climate, this research underscores the urgency of addressing climate change with a nuanced understanding of its underlying complexities.

Journal Reference:
Johannes Lohmann et al. ‘Multistability and Intermediate Tipping of the Atlantic Ocean Circulation’, Science Advances 10, eadi4253 (2024). DOI: 10.1126/sciadv.adi4253.

Source: University of Leicester
Featured image credits: pvproductions | Freepik.com

Equity Must Be Considered in Ocean Governance to Achieve Global Targets by 2030
Equity Must Be Considered in Ocean Governance to Achieve Global Targets by 2030Science

Equity Must Be Considered in Ocean Governance to Achieve Global Targets by 2030

By Wildlife Conservation Society (WCS) As the world presses forward with urgency towards reaching global biodiversity and climate targets by 2030, there must be increased…
SourceSourceMay 16, 2024 Full article
Capturing carbon with energy-efficient sodium carbonate−nanocarbon hybrid material
Scientists have created a new hybrid material containing sodium carbonate and nanocarbon to capture carbon dioxide from industrial emissions
Capturing carbon with energy-efficient sodium carbonate−nanocarbon hybrid materialClimate

Capturing carbon with energy-efficient sodium carbonate−nanocarbon hybrid material

Chiba University - Industrial emissions are one of the main sources of climate change-inducing carbon dioxide (CO2). While adopting renewable and clean energy alternatives is…
SourceSourceJuly 16, 2024 Full article
Challenges and potential for underground CO₂ storage in Switzerland
Image: Purple and Yellow Flowers Near White Mountain during Daytime (s. Matterhorn, carbon storage)
Challenges and potential for underground CO₂ storage in SwitzerlandScience

Challenges and potential for underground CO₂ storage in Switzerland

In brief: Storing CO₂ underground in SwitzerlandResearchers at ETH Zurich have investigated whether CO₂ can be permanently stored underground in the Swiss Alps by compiling…
SourceSourceMarch 1, 2025 Full article