By Aerospace Information Research Institute, Chinese Academy of Sciences

A cutting-edge study harnesses the power of spaceborne Global Navigation Satellite System-Reflectometry (GNSS-R) technology to accurately measure sea ice thickness, a critical parameter for understanding climate change impacts in polar regions. This breakthrough method, using a sophisticated three-layer model, significantly enhances the precision of thickness estimation, offering a vital tool for climate scientists and polar explorers.

The polar regions are critical to understanding climate change due to their significant impact on global weather patterns and sea levels. Traditional methods of measuring sea ice thickness face challenges such as high costs and limited spatial coverage. Due to these challenges, an in-depth study is necessary to explore more efficient and accurate techniques for sea ice thickness retrieval.

Researchers at the School of Remote Sensing and Geomatics Engineering, Nanjing University of Information Science and Technology, have published their findings in the Satellite Navigation journal on 10 June 2024. The study introduces a refined method using Fengyun-3E (FY-3E) satellite data to estimate sea ice thickness (SIT) with a three-layer model, promising a significant advancement in polar climate studies.

The study rigorously evaluates the performance of a novel three-layer model against the traditional two-layer model for retrieving SIT. Using sea ice data from 2022 and 2023, the three-layer model demonstrated a Root Mean Square Error (RMSE) of 0.149 meters and a correlation coefficient (r) of 0.830, indicating high accuracy. In contrast, the two-layer model, while effective for thin ice, showed reduced accuracy for thicker ice, with an RMSE of 0.162 meters and an r value of 0.789. To maximize accuracy, researchers combined the two models, resulting in an RMSE of 0.137 meters and an r value of 0.852. This combined approach significantly enhances the precision of SIT retrieval, making it applicable to ice thicknesses up to 1.1 meters. This marks a substantial advancement in remote sensing techniques for polar research.

Dr. Qingyun Yan, one of the lead researchers, stated, “This innovative approach leverages the strengths of both two-layer and three-layer models, providing a more accurate and reliable method for monitoring sea ice thickness. It represents a crucial step forward in our ability to study and understand polar regions.”

The enhanced accuracy of sea ice thickness measurements has profound implications for climate research, marine resource development, and polar expedition planning. This method offers a cost-effective and comprehensive solution for large-scale SIT monitoring, aiding in the prediction of climatic changes and supporting sustainable practices in polar regions. Future developments in GNSS-R technology may further refine these models, leading to even more precise measurements.

More information: Yunjian Xie, Qingyun Yan, ‘Retrieval of sea ice thickness using FY-3E/GNOS-II data’, Satellite Navigation (5, 17; 2024); DOI: 10.1186/s43020-024-00138-5. Aerospace Information Research Institute, Chinese Academy of Sciences – Original Article | CAS. Featured image credit: vecstock | Freepik (AI Gen)

Image: Fieldwork in Svalbard
Arctic peatlands spreading northward as temperatures riseClimate

Arctic peatlands spreading northward as temperatures rise

Warming temperatures and longer growing seasons are driving the outward spread of Arctic peatlands, raising hopes for increased carbon storage, but also concerns about long-term…
SourceSourceJune 19, 2025 Full article
Image: Brown bear in the natural habitat, Finland
Climate and diet drive brown bear shifts across EuropeClimate

Climate and diet drive brown bear shifts across Europe

Trophic relationships are key to understanding changes in the distribution of certain species, according to a study Summary: The distribution of brown bears across Europe…
SourceSourceJune 18, 2025 Full article
Electric car charging at station
EV transition worries French car industry workersClimateNews

EV transition worries French car industry workers

By Béatrice JOANNIS | AFP Vouziers, France - As France faces a 2035 deadline to phase out new combustion engine cars, workers in the industry…
SourceSourceAugust 4, 2024 Full article