Skip to main content

Study finds contaminated mining sites worsen risks from fires.

By University of Waterloo

The wildfire season of 2023 was the most destructive ever recorded in Canada and a new study suggests the impact was unprecedented. It found that four of the year’s wildfires in mine-impacted areas around Yellowknife, Northwest Territories potentially contributed up to half of the arsenic that wildfires emit globally each year.

The work, led by researchers at the University of Waterloo and Nipissing University, is the first to calculate the amount of arsenic that was stored in areas at high risk of wildfires around Yellowknife. Looking at data from the past five decades, the team estimates the 2023 wildfires potentially released between 69 and 183 tonnes of arsenic.

Arsenic, a potent toxin, which the World Health Organization associates with diabetes, cardiovascular disease, various cancers, and infant mortality, can be transformed by wildfire and released into the environment from the soils that normally sequester it.

Given that the frequency and severity of wildfires is expected to increase because of climate change, the researchers caution that in any regions in the world where annual wildfires intersect with past or present mining and smelting operations, future fires could present a major risk for releasing stored toxins back into the environment.

“Yellowknife has a decades-long history of mining, which has led to an accumulation of arsenic in the surrounding landscape. However, Yellowknife is not unique in this regard, Canada has many industrially contaminated sites that are vulnerable to wildfire,” said Dr. Owen Sutton, a postdoctoral fellow in the Faculty of Environment at Waterloo.

The amount of arsenic released by wildfires depends on a multitude of factors, such as fire temperature, depth of the burn, and soil type, and the combination of these variables.

“While our research has raised the alarm on this issue, we will be the first to argue there is an urgent need for collaborative investigation by wildfire scientists, chemists, environmental scientists and policy experts,” said Dr. Colin McCarter, professor in the Department of Geography at Nipissing University and Canada Research Chair in Climate and Environmental Change. “By integrating diverse fire management techniques, including Indigenous fire stewardship, we can hopefully mitigate these emerging risks to human and environmental health.”

The researchers found that arsenic emissions from wetlands were the most concerning because of their tendency to store contaminants compared to forests. Moving forward, they will continue quantifying the amount of toxins being stored by northern peatlands and study the potential release of other metals from those landscapes.

Dr. James Waddington, from McMaster University, also contributed to the work. ‘Globally-significant arsenic release by wildfires in a mining-impacted boreal landscape’, appears in Environmental Research Letters.

More information: O.F. Sutton, C.P.R. McCarter and J.M. Waddington, ‘Globally-significant arsenic release by wildfires in a mining-impacted boreal landscape’, Environmental Research Letters (vol. 19; 2024); DOI: 10.1088/1748-9326/ad461a | UW Press Release/Material. Featured image credit: Freepik

Image: aerial view of island with bridge (s. canada, vancouver, british columbia)
British Columbia cities uneven in heat preparednessClimate

British Columbia cities uneven in heat preparedness

Prepare today to save lives tomorrow: SFU study finds gaps in B.C. extreme heat response plans Summary: British Columbia’s local governments are falling short in…
SourceSourceApril 25, 2025 Full article
Satellite Image: Uluru, Australia
Image of the day: Uluru seen from spaceNews

Image of the day: Uluru seen from space

Uluru in Australia’s Northern Territory rises 348 metres above the desert plain and has stood for more than 500 million years. Known to the Anangu…
Muser NewsDeskMuser NewsDeskAugust 28, 2025 Full article
Image: Snow covered mountains under the blue sky, Siberia (s. climate change)
Refined land cover map of Siberia improves climate data for modelingClimate

Refined land cover map of Siberia improves climate data for modeling

Machine learning techniques reveal a high-precision land cover map for Siberia, enhancing climatic predictions Summary: A newly refined land cover map of Siberia provides more…
SourceSourceMarch 25, 2025 Full article