By Marcy de Luna | Rice University

A research team at Rice University led by James Tour, the T.T., and W.F. Chao, Professor of Chemistry and professor of materials science and nanoengineering, is tackling the environmental issue of efficiently recycling lithium ion batteries amid their increasing use.

The team has pioneered a new method to extract purified active materials from battery waste as detailed in the journal Nature Communications. Their findings have the potential to facilitate the effective separation and recycling of valuable battery materials at a minimal fee, contributing to a greener production of electric vehicles (EVs).

“With the surge in battery use, particularly in EVs, the need for developing sustainable recycling methods is pressing,” Tour said.

Conventional recycling techniques typically involve breaking down battery materials into their elemental forms through energy-intensive thermal or chemical processes that are costly and have significant environmental impacts.

The team proposed that magnetic properties could facilitate the separation and purification of spent battery materials.

Their innovation uses a method known as solvent-free flash Joule heating (FJH). This technique devised by Tour involves passing a current through a moderately resistive material to rapidly heat and transform it into other substances.

Using FJH, the researchers heated battery waste to 2,500 Kelvin within seconds, creating unique features with magnetic shells and stable core structures. The magnetic separation allowed for efficient purification.

During the process, the cobalt-based battery cathodes — typically used in EVs and associated with high financial, environmental and social costs — unexpectedly showed magnetism in the outer spinel cobalt oxide layers, allowing for easy separation.

The researchers’ approach resulted in a high battery metal recovery yield of 98% with the value of battery structure maintained.

“Notably, the metal impurities were significantly reduced after separation while preserving the structure and functionality of the materials,” Tour said. “The bulk structure of battery materials remains stable and is ready to be reconstituted into new cathodes.”

Rice graduate students Weiyin Chen and Jinhang Chen as well as postdoctoral researcher and Rice Academy Junior Fellow Yi Cheng are the co-lead authors of the study.

The co-authors include research administrator of materials science and nanoengineering Ksenia Bets; former postdoctoral researcher and now academic visitor in the Tour lab Rodrigo Salvatierra; postdoctoral researcher Bing Deng; applied physics graduate students Chang Ge, Duy Luong and Emily McHugh; Rice alumni John Li and Zicheng Wang; chemistry research scientist Carter Kittrell; research scientist of materials science and nanoengineering Guanhui Gao; assistant professor of materials science and nanoengineering Yimo Han; and the Karl F. Hasselmann Professor of Engineering and professor of materials science and nanoengineering Boris Yakobson.

***

The study was supported by the Air Force Office of Scientific Research, U.S. Army Corps of Engineers ERDC and Rice Academy Fellowship.

More information: Chen, W., Cheng, Y., Chen, J., Tour, J.M. et al. ‘Nondestructive flash cathode recycling’, Nature Communication (15 6250; 2024); DOI: 10.1038/s41467-024-50324-x | RU PressRelease/Material. Featured image credit: Freepik

Aerial view of village after flood (s. climate change, climate trauma)
Climate change trauma and collective dissociationScience

Climate change trauma and collective dissociation

Dissociation is a coping mechanism impeding effective climate action Summary: A sense of powerlessness in the face of the climate emergency is leading to collective…
SourceSourceMarch 11, 2025 Full article
Image: Rendering by S Bekessy in collaboration with C Horwill, J Ware & M Baracco, RMIT’s School of Architecture and Design
Trees please me, but we also need biodiversity in our citiesNews

Trees please me, but we also need biodiversity in our cities

By Sarah Bekessy, RMIT University in Melbourne Increasing the amount of nature in our cities can provide many benefits as long as it's done with biodiversity in…
SourceSourceMay 20, 2024 Full article
Image: collage of images showing evolution of the heatwave across Europe from 28 June to 3 July 2025
Image of the day: Scorching land temperatures track Europe’s spreading heatwaveNews

Image of the day: Scorching land temperatures track Europe’s spreading heatwave

An intense heatwave has swept across Europe since late June 2025, with scorching land surface temperatures expanding eastward over the course of a week. The…
Muser NewsDeskMuser NewsDeskJuly 4, 2025 Full article