Stockholm University researchers have unveiled an alternative approach to assessing global water scarcity, revealing that the risks to water supply are more significant than previously understood.

Published in Nature Water, the study suggests that evaluating the environmental and governance conditions in regions where rain originates, rather than just where it falls, leads to a nearly 50% increase in the estimated risk to global water security.

global water muser res
The figure describes the relationship between the risk to water security in each hydrological basin and the governance and environmental conditions in the regions upwind. The relationship between governance (y axis), environmental performance (x axis), the level of risk to water security of each hydrological basin relative to the 379 basins used in the study (colour gradient) and the area of the basin (size of the circle). Governance is calculated as the mean of the five governance indicators; voice accountability, political stability, government effectiveness, regulatory quality and the rule of law (reported by the World Bank). Environmental performance is given by the 40 indicators of the Environmental Performance Index from the Yale Center for Environmental Law and Policy. The dashed red polygonhighlights basins with low levels of upwind governance and environmental performance. Credit: Stockholm University | DOI: 10.1038/s44221-024-00291-w

Traditionally, water security assessments focus on the rain that falls on the Earth’s surface and is stored in aquifers, lakes, and rivers. However, this new research emphasizes the importance of considering the source of the moisture that eventually becomes rain – a concept referred to as the precipitationshed. This approach takes into account the upwind regions where moisture evaporates from land or oceans before traveling through the atmosphere and falling as rain in downwind areas.

“Water supply really originates beforehand, with moisture evaporated from land or in the ocean traveling in the atmosphere before falling as rain. This upwind moisture is commonly overlooked when assessing water availability,” explained Fernando Jaramillo, associate professor in physical geography at Stockholm University and the study‘s lead researcher.

By analyzing 379 hydrological basins around the world, the researchers found that when the upwind origin of water is considered, the volume of water facing very high risk increases from 20,500 km³ per year to 32,900 km³ per year.

The study also highlights the significant impact that political and environmental management in upwind regions can have on downwind water security.

For example, deforestation and agricultural development in upwind areas can reduce the amount of moisture available for downwind rainfall, thereby increasing the risk of water scarcity. This is particularly concerning for landlocked countries like Niger, which rely heavily on moisture evaporated from neighboring countries such as Nigeria and Ghana.

Lan Wang-Erlandsson, a co-author of the study from the Stockholm Resilience Centre, emphasized the interdependence between upwind and downwind regions: “It is not possible to ignore the interdependence between countries. In the end, all water is connected, so we should not only mind how we manage our water resources within a region or country but also how our neighboring countries do.”

The study underscores the need for international cooperation in managing upwind moisture sources, suggesting that a shift in perspective could help mitigate water-related tensions and improve global water governance frameworks.

Journal Reference:
Posada-Marín, J., Salazar, J., Rulli, M.C. et al. ‘Upwind moisture supply increases risk to water security’, Nature Water (2024). DOI: 10.1038/s44221-024-00291-w

Article Source:
Press Release/Material by Stockholm University
Featured image credit: jcomp | Freepik

Image: Black-browed albatros
Storms challenge albatrosses’ feasting flights, study revealsScience

Storms challenge albatrosses’ feasting flights, study reveals

New research shines a spotlight on the unforeseen challenges facing one of the world’s most iconic seabirds, the albatross, during extreme ocean storms. Known for…
Adrian AlexandreAdrian AlexandreNovember 6, 2024 Full article
Image: El Niño, Earth
El Niño oscillations were stronger and more frequent in Earth’s ancient pastScience

El Niño oscillations were stronger and more frequent in Earth’s ancient past

A recent study from Duke University researchers reveals that the El Niño phenomenon, a warm ocean event with global climatic impact, has been occurring for…
Adrian AlexandreAdrian AlexandreOctober 22, 2024 Full article
Image of Earth from space
Detecting climate change using aerosolsClimateScience

Detecting climate change using aerosols

Researchers propose a new metric using aerosols to understand changes in transboundary air pollution pathways due to climate changes. By Chiba University Climate change is…
SourceSourceAugust 8, 2024 Full article