Skip to main content

Researchers at McGill University have developed an innovative process that utilizes sunlight to convert methane and carbon dioxide – two potent greenhouse gases – into valuable chemicals. This breakthrough could help mitigate climate change and offer a sustainable method for producing industrial products.

The light-driven chemical process transforms methane and carbon dioxide into green methanol and carbon monoxide, both crucial in the chemical and energy sectors.

“Imagine a world where the exhaust from your car or emissions from a factory could be transformed, with the help of sunlight, into clean fuel for vehicles, the building blocks for everyday plastics, and energy stored in batteries,” said Hui Su, co-first author and Postdoctoral Fellow at McGill’s Department of Chemistry.

The research, published in Nature Communications, is inspired by natural processes like photosynthesis.

In this method, a catalyst composed of gold, palladium, and gallium nitride, when exposed to sunlight, facilitates a reaction that adds an oxygen atom from carbon dioxide to methane, producing green methanol. Carbon monoxide is also generated as a byproduct.

Chao-Jun Li, lead author and Distinguished James McGill Professor, emphasized the process’s sustainability, noting it works at room temperature and avoids the harsh conditions required in other methods.

“By tapping into the abundant energy of the sun, we can essentially recycle two greenhouse gases into useful products. The process works at room temperature and doesn’t require the high heat or harsh chemicals used in other chemical reactions,” said Li.

This advancement, supported by several Canadian research programs, offers a potential pathway to achieve Canada’s net-zero emissions target by 2050.

Journal Reference:
Su, H., Han, JT., Miao, B., Salehi, M., Li, CJ. ‘Photosynthesis of CH3OH via oxygen-atom-grafting from CO2 to CH4 enabled by AuPd/GaN’, Nature Communications 15, 6435 (2024). DOI: 10.1038/s41467-024-50801-3

Article Source:
Press Release/Material by McGill University
Featured image credit: Freepik


Image: AI art of Earth - climate change effects (s. science, climate, Muser)
Climate Science Digest: June 24, 2025Science

Climate Science Digest: June 24, 2025

Explore the latest insights from top science journals in the Muser Press daily roundup (June 24, 2025), featuring impactful research on climate change challenges. In…
Muser NewsDeskMuser NewsDeskJune 24, 2025 Full article
How the rising earth in Antarctica will impact future sea level riseClimateScience

How the rising earth in Antarctica will impact future sea level rise

Effects will depend on how much global warming is controlled, study finds. By Tatyana Woodall | Ohio State University The rising earth beneath the Antarctic…
SourceSourceAugust 3, 2024 Full article
New discovery reveals unexpected ocean algae help cool the EarthClimateScience

New discovery reveals unexpected ocean algae help cool the Earth

By University of East Anglia A common type of ocean algae plays a significant role in producing a massively abundant compound that helps cool the…
SourceSourceJune 11, 2024 Full article