Skip to main content

Researchers from Tokyo Metropolitan University have developed a cutting-edge electrochemical cell that could revolutionize the conversion of captured carbon dioxide (CO2) into green fuel.

tok cell muser
The team’s new cell features a polymer electrolyte membrane and a porous layer, where carbon dioxide is generated in-situ and reacts at the cathode to form formate ions. Credit: Tokyo Metroplitan University | DOI: 10.1039/D4EY00122B

Their novel design converts bicarbonate solutions derived from captured CO2 into formate, a valuable green fuel, with impressive efficiency. This innovation marks a key step toward industrial-scale carbon utilization, addressing challenges in reactive carbon capture (RCC) and rivaling the performance of energy-intensive gas-fed methods.

Carbon capture plays a crucial role in global efforts to reduce emissions and mitigate climate change. However, the question of how to effectively use captured CO2 remains unresolved. While storing CO2 underground is one option, scientists are seeking ways to convert this waste into useful products.

Among the most promising applications is the conversion of CO2 into formate, a compound that can be used in fuel cells to generate clean energy.

Previous attempts at converting CO2 into formate faced challenges, particularly the need for pure CO2, which is energy-intensive to produce and convert. Reactive carbon capture offers an alternative by utilizing CO2 dissolved in alkaline solutions, like bicarbonate. However, researchers needed a more efficient electrochemical cell to selectively convert bicarbonate into formate without unwanted side reactions.

The team led by Professor Fumiaki Amano has overcome these hurdles by developing a new cell with a porous cellulose ester membrane.

This design enables highly selective production of formate ions, with a faradaic efficiency of 85%, even under high currents. Moreover, the cell operates for over 30 hours with nearly complete conversion of bicarbonate to formate, leaving behind solid, crystalline fuel once the water is removed.

This breakthrough has the potential to significantly enhance the efficiency of CO2 conversion technology, directly adding value to carbon waste streams. The researchers hope their new bicarbonate electrolyzer will contribute to the global shift toward net-zero emissions.

***

The work was supported by the Tokyo Metropolitan Government.

Journal Reference:
Kohta Nomoto, Takuya Okazaki, Kosuke Beppu, Tetsuya Shishido and Fumiaki Amano, ‘Highly selective formate formation via bicarbonate conversions’, EES Catalysis (2024). DOI: 10.1039/D4EY00122B

Article Source:
Press Release/Material by Tokyo Metropolitan University
Featured image credit: Freepik

Safeguarding peer review to ensure quality at scaleScience

Safeguarding peer review to ensure quality at scale

By Mirjam Eckert, Chief Publishing Officer | Frontiers In the context of climate emergency, making scientific research open has never been more important. But for…
SourceSourceJune 11, 2024 Full article
Coastal horseshoe crab (in the photo) that the researchers spotted on the beach at East Coast Park, Singapore
Conservation strategies mapped for Asia’s horseshoe crabsScience

Conservation strategies mapped for Asia’s horseshoe crabs

Understanding our planet’s living fossilsBack to the basics: Filling data gaps to advance conservation effortsTailored conservation strategies neededNext steps Summary: Researchers at the National University…
SourceSourceJanuary 27, 2025 Full article
Lake Victoria’s Winam Gulf is a body of water similar to Lake Erie, and could potentially be a model for the Great Lake in a warming climate
Toxic algal blooms in Lake Victoria offer clues for Lake Erie’s futureScience

Toxic algal blooms in Lake Victoria offer clues for Lake Erie’s future

Researchers studying Kenya’s Winam Gulf, part of Lake Victoria, have uncovered parallels between toxic algal blooms there and those threatening Lake Erie. Published in Applied…
SourceSourceJanuary 22, 2025 Full article