Skip to main content

The Antarctic Peninsula has experienced a dramatic increase in vegetation cover over the past four decades, according to new research.

A study by the universities of Exeter and Hertfordshire, along with the British Antarctic Survey, revealed that plant life across the region has expanded more than tenfold, with vegetation cover rising from less than one square kilometer in 1986 to nearly 12 square kilometers by 2021.

This unprecedented growth is directly linked to the rapid warming of the Antarctic Peninsula, a region that, like many polar areas, is warming faster than the global average. Extreme heat events in Antarctica have become more frequent, fueling this transformation.

The study, published in Nature Geoscience, relied on satellite data to assess the extent of the “greening” trend, showing that plant growth has accelerated by over 30% in recent years.

Between 2016 and 2021, vegetation expanded by more than 400,000 square meters annually, highlighting the accelerating pace of change. This finding corroborates earlier research (in 2017) that used core samples from moss-dominated ecosystems in the region, which also found a significant increase in plant growth rates in recent decades.

Norsel Point. Credit Dan Charman
Norsel Point. Credit Dan Charman | DOI: 10.1038/s41561-024-01564-5

“The plants we find on the Antarctic Peninsula – mostly mosses – grow in perhaps the harshest conditions on Earth,” said Dr. Thomas Roland of the University of Exeter. “The landscape is still almost entirely dominated by snow, ice, and rock, with only a tiny fraction colonized by plant life. But that tiny fraction has grown dramatically – showing that even this vast and isolated wilderness is being affected by anthropogenic climate change.”

Dr. Olly Bartlett from the University of Hertfordshire noted that as these ecosystems establish themselves and the climate continues to warm, greening across the region is expected to increase. The limited soil on the peninsula, mostly poor or non-existent, will likely benefit from the growing vegetation, which will add organic matter and contribute to soil formation.

This could potentially pave the way for more plant species to colonize the region. However, Bartlett raised concerns about the risk of non-native and invasive species being introduced, possibly carried by eco-tourists, scientists, or other visitors.

The study’s authors stressed the need for further research to understand the specific environmental and climatic mechanisms driving the greening phenomenon.

“The sensitivity of the Antarctic Peninsula’s vegetation to climate change is now clear, and under future anthropogenic warming, we could see fundamental changes to the biology and landscape of this iconic and vulnerable region,” said Dr. Roland. “Our findings raise serious concerns about the environmental future of the Antarctic Peninsula and the continent as a whole.”

The research team is now investigating how deglaciated landscapes are being colonized by plants and how this process might evolve in the future. Understanding these changes is crucial to protecting the Antarctic region from the potentially far-reaching impacts of climate change.

Journal Reference:
Roland, T.P., Bartlett, O.T., Charman, D.J. et al. ‘Sustained greening of the Antarctic Peninsula observed from satellites’, Nature Geoscience (2024). DOI: 10.1038/s41561-024-01564-5

Article Source:
Press Release/Material by University of Exeter
Featured image: Green Island Credit: Matt Amesbury

Muser Press – New Research Articles Week 42, 2024
A tree in the globe hovering in desert - abstract image (s. research, science, climate)
Muser Press – New Research Articles Week 42, 2024Science

Muser Press – New Research Articles Week 42, 2024

Vulnerability of Arctic-Boreal methane emissions to climate change The rapid warming of the Arctic-Boreal region has led to the concern that large amounts of methane…
SourceSourceOctober 20, 2024 Full article
New model reveals how pollution spreads through Galveston Bay during storms
Image: Aerial view of Kemah Marina, Galveston Bay, Tx, USA (s. pollution, Galveston Bay)
New model reveals how pollution spreads through Galveston Bay during stormsScience

New model reveals how pollution spreads through Galveston Bay during storms

Model tracks how pollution travels through Galveston Bay Summary: Understanding how pollution spreads through complex estuarine environments is essential for protecting coastal communities and ecosystems.…
SourceSourceApril 16, 2025 Full article
Leap in modelling human impact on climate offers potential early warnings of disasters
Hourglass with Earth inside with an glacier melting above - global warming concept
Leap in modelling human impact on climate offers potential early warnings of disastersScience

Leap in modelling human impact on climate offers potential early warnings of disasters

A groundbreaking theoretical advancement has provided scientists with an improved framework for understanding the connections between observed climate changes and their human-made or natural causes.…
Muser NewsDeskMuser NewsDeskDecember 11, 2024 Full article