Skip to main content

Through a 20-year experiment, investigators have shown how different trees adjust their strategies for acquiring nutrients through their roots as soil warms with climate change.

The research, which is published in Global Change Biology, included trees that associate with different fungi that help roots absorb nutrients. Measurements showed that when exposed to warmer soils, oak trees associated with ectomycorrhizal fungi reduce interactions with soil microbes while increasing fine root exploration, whereas maple trees that associate with arbuscular mycorrhizal largely maintain their belowground patterns.

The findings suggest that the root systems of arbuscular mycorrhizal trees may not need to adjust their belowground foraging strategies as much as ectomycorrhizal trees to remain competitive as global temperatures rise.

“The structure of future forests under global warming will probably be influenced by the ability of tree roots and their fungal partners to compete belowground in warmer soils,” said corresponding author Nikhil R. Chari, a PhD student at Harvard University.

Journal Reference:
Nikhil R. Chari, Thomas J. Muratore, Serita D. Frey, Cristina L. Winters, Gabriela Martinez, Benton N. Taylor, ‘Long-Term Soil Warming Drives Different Belowground Responses in Arbuscular Mycorrhizal and Ectomycorrhizal Trees’, Global Change Biology 30, 11, e17550 (2024). DOI: 10.1111/gcb.17550

Article Source:
Press Release/Material by Wiley
Featured image credit: wirestock | Freepik

Climate Science Digest: December 7, 2024
Small iceberg floating in ocean water under a bright sky with the Sun visible above - climate change effects (s. science, climate, Muser)
Climate Science Digest: December 7, 2024Science

Climate Science Digest: December 7, 2024

Heat-related deaths show unexpected vulnerability among youth in Mexico A recent study examining heat-related mortality in Mexico has challenged common assumptions about age-specific vulnerabilities to…
Muser NewsDeskMuser NewsDeskDecember 8, 2024 Full article
Ancient bacteria reveal a unique way to generate energy without oxygen
Image: Close-up on bacteria (s. Ancient bacteria reveal a unique way to generate energy without oxygen)
Ancient bacteria reveal a unique way to generate energy without oxygenScience

Ancient bacteria reveal a unique way to generate energy without oxygen

Scientists at Goethe University discover how the oldest enzyme of cellular respiration works – potential applications in removing CO₂ from exhaust gases Summary: Long before…
SourceSourceMarch 18, 2025 Full article
Rice genome study reveals keys to climate-resilient crops
Image: Agriculture IoT with rice field background
Rice genome study reveals keys to climate-resilient cropsScience

Rice genome study reveals keys to climate-resilient crops

Discovered genes provide strategies to protect rice crops against climate change and to domesticate wild relatives that can grow in currently unproductive habitats Summary: A…
SourceSourceApril 30, 2025 Full article