A groundbreaking theoretical advancement has provided scientists with an improved framework for understanding the connections between observed climate changes and their human-made or natural causes.

This leap in climate modelling could enable early warnings of catastrophic climate tipping points, offering policymakers the tools to respond more effectively to emerging threats.

The innovation stems from an international collaboration between Valerio Lucarini, a mathematician at the University of Leicester, and scientist Mickaël Chekroun of the University of California, Los Angeles, and the Weizmann Institute of Science. Their research employs principles of statistical mechanics to refine the detection of human-caused climate change signals amid natural variability and anticipate potential climatic tipping points.

temperature anomaly res
Map showing global temperature anomaly in degrees Celsius caused by doubling the concentration of carbon dioxide over a century. Credit: Valerio Lucarini and Mickaël Chekroun

Tipping points, such as the collapse of the Atlantic Ocean’s circulation or the Amazon rainforest, represent critical thresholds beyond which the climate system undergoes irreversible and large-scale changes. While these events carry dire consequences, their onset has proven challenging to predict due to the “background noise” of natural climate variability obscuring human-made signals.

This study, published in Physical Review Letters, advances beyond traditional statistical methods, which, while valuable, lack insights into the dynamic processes shaping climate systems. The researchers developed a mathematical model rooted in statistical mechanics, the physics of random dynamical processes. This approach dynamically reconstructs how observed climate conditions arose, providing a clearer “fingerprint” of human influence on climate.

Professor Lucarini emphasized the importance of this development in addressing skepticism about attributing climate change to human activities. “Climate change sceptics have questioned how you can relate a forcing in a system that fluctuates a lot to a specific cause,” he explained. “The breakthrough we made is in connecting the physics of the system, the laws that determine the evolution of the system, to what you can observe.”

Dr. Chekroun highlighted the significance of their findings, noting, “This is quite a big step because it tells us that the detection and attribution methods we have used for many years to say that climate change is there are well founded. We have advanced substantially the theory of climate dynamics and of the relationship between climate variability and climate change.”

This theoretical advancement not only strengthens confidence in climate change attribution but also offers a pathway to identifying early warnings of tipping points. Policymakers stand to benefit from more reliable assessments of climate risks, enabling targeted actions to mitigate potential disasters.

Journal Reference:
Valerio Lucarini and Mickaël D. Chekroun, ‘Detecting and Attributing Change in Climate and Complex Systems: Foundations, Green’s Functions, and Nonlinear Fingerprints’, Physical Review Letters 133, 244201 (2024). DOI: 10.1103/PhysRevLett.133.244201

Article Source:
Press Release/Material by University of Leicester
Featured image credit: user6702303 | Freepik

Image: Pollinator. flower
Pollinators thrive on smallholder farms beyond forest edgesScience

Pollinators thrive on smallholder farms beyond forest edges

Pollinator and fruit diversity on the globe’s smallholder farms – which account for up to 80% of all farms – remains strong, despite ecological fragmentation.…
SourceSourceDecember 22, 2025 Full article
Light pollution: mitigation measures for environmental protectionScience

Light pollution: mitigation measures for environmental protection

Light pollution has become an increasingly concerning environmental issue that not only affects our view of the night sky but also has broader implications for…
Adrian AlexandreAdrian AlexandreDecember 12, 2023 Full article
Small iceberg floating in ocean water under a bright sky with the Sun visible above - climate change effects (s. science, climate, Muser)
Climate Science Digest: January 15, 2025Science

Climate Science Digest: January 15, 2025

From drops to data: Advancing global precipitation estimates with the LETKF algorithmNew study shows that corn-soybean crop rotation benefits are extremely sensitive to climateHow cryogenic…
Muser NewsDeskMuser NewsDeskJanuary 16, 2025 Full article