Skip to main content

The tiny phytoplankton that drive oxygen production and carbon storage in Earth’s oceans are revealing how they navigate their ever-changing underwater world.

cnrs diatom res
Diatoms are unicellular photosynthetic algae, with a silicious skeleton. They belong to the phytoplankton family. Credit: © John Dolan/CNRS Images

Researchers from the CNRS and Sorbonne University have identified a critical mechanism: light-sensing molecules called phytochromes, embedded in the genomes of diatoms, a prominent group of phytoplankton. This discovery sheds light on the strategies microalgae use to adapt to turbulent aquatic environments and shifting light conditions.

Diatoms, like terrestrial plants, perform photosynthesis, contributing significantly to the planet’s oxygen production and carbon capture. However, maintaining this balance in the mixed layers of the ocean requires sophisticated adaptations.

Phytochromes act as “eyes” for these microalgae, detecting subtle changes in the light spectrum as it filters through the water column. By interpreting these variations, diatoms determine their vertical position and adjust their biological activities, particularly photosynthesis.

The study, published in Nature, shows the role of phytochromes in high-latitude, temperate, and polar regions – areas prone to strong water mixing and marked by dramatic seasonal light variations. Through environmental genomic data from the Tara Oceans marine sampling campaigns, researchers discovered that phytochromes are exclusively present in diatoms inhabiting zones beyond the Tropics of Cancer and Capricorn. These regions’ pronounced seasonality appears to demand a mechanism for tracking seasonal changes, with phytochromes enabling diatoms to measure shifts in day length.

This revelation not only illuminates the ways phytoplankton perceive and respond to their environment but also highlights their adaptability in the face of environmental changes. By integrating data from both laboratory experiments and natural marine settings, the research paves the way for a deeper understanding of marine ecosystems and their resilience in a rapidly changing world.

Journal Reference:
Duchêne, C., Bouly, JP., Pierella Karlusich, J.J. et al. ‘Diatom phytochromes integrate the underwater light spectrum to sense depth’, Nature (2024). DOI: 10.1038/s41586-024-08301-3
Article Source:
Press Release/Material by CNRS
Featured image credit: NOAA | Unsplash

Image: Underwater world with fish and corals generative AI
Exploring three frontiers in marine biomass and blue carbon captureScience

Exploring three frontiers in marine biomass and blue carbon capture

By Boston University A new study offers first-time insights into three emerging climate innovations to safeguard or increase the carbon naturally captured by ocean and…
SourceSourceJune 6, 2024 Full article
UCF Biologist Continues Unraveling Mystery of Magnetic BacteriaScience

UCF Biologist Continues Unraveling Mystery of Magnetic Bacteria

UCF Biologist Robert Fitak recently created a refined database of magnetic bacteria and the animals they may reside in to further study how these bacteria…
SourceSourceJuly 10, 2024 Full article
Airplane flying above a building - noise exposure
Aircraft noise exposure tied to increased heart risks, study showsScience

Aircraft noise exposure tied to increased heart risks, study shows

Living near airports may pose a hidden risk to heart health, according to a study published in the Journal of the American College of Cardiology.…
SourceSourceJanuary 9, 2025 Full article