by Zhang Nannan, Chinese Academy of Sciences

The process of soil wind erosion is influenced by vegetation cover. From a functional point of view, vegetation can be divided into photosynthetic vegetation (PV) and non-photosynthetic vegetation (NPV). The NPV represents dormant and dead vegetation, crop residues, and litter, which are the main components of surface vegetation during the non-growing season. It also helps to reduce wind erosion during this time. However, the normalized difference vegetation index (NDVI) can generally reflect the fractional cover of PV, but it may not accurately reflect the fractional cover of NPV, leading to potential errors in estimating the fractional cover of NPV.

1 s2.0 S0016706124001095 gr1 lrg cas res
Map of the Mu Us Sandy Land and distributions of field investigation sites: a. location, land use types (2020), field spectral sites and observation sites in the Mu Us Sandy Land, b. Big Spring Number Eight sand collector, c. ultrasonic anemometer (surrounded by a red oval) c. process of collecting spectra in the Mu Us Sandy Land. Credit: Geoderma (2024). DOI: 10.1016/j.geoderma.2024.116880

A research team from the Northwest Institute of Eco-Environment and Resources of the Chinese Academy of Sciences collected hyperspectral data on NPV to estimate the fractional coverage in the Mu Us Sandy Land (MUSL) using Landsat 8-OLI images from 2014 to 2017.

In the study published in Geoderma, the researchers conducted short-term observations of wind erosion to estimate the fractional cover of NPV and calibrate the simulated results to reduce uncertainties in wind erosion simulations.

They found that the mean values of NPV fractional cover in the MUSL from 2014 to 2017 were approximately 2.71 times higher than those estimated from NDVI data.

After coupling NPV into the revised wind erosion equation model, the simulation accuracy of this model obviously increased, which was validated by observational data.

Without considering NPV, the wind erosion modulus is overestimated. The wind erosion modulus was overestimated at rates of 130.48 t/km2/a, 91.79 t/km2/a, 85.51 t/km2/a, and 93.76 t/km2/a from 2014 to 2017, respectively. The corresponding wind erosion overestimation rates for these years were 26.52%, 16.9%, 21.47% and 31.33%, respectively.

In this study, NPV was integrated into the RWEQ model to enhance the simulation accuracy of this model and to provide a new perspective for the future development of wind erosion models.

This article is republished under a Creative Commons Attribution 4.0 International License. Read the original article.

(More information: Xiufan Liu et al, ‘An improvement of the Revised Wind Erosion Equation by considering the effect of non-photosynthetic vegetation’, Geoderma (2024). DOI: 10.1016/j.geoderma.2024.116880)

A tree in the globe hovering in desert - abstract image (s. research, science, climate)
Muser Press – New Research Articles Week 9, 2025Science

Muser Press – New Research Articles Week 9, 2025

Discover the latest articles from leading science journals in the Muser Press weekly roundup, showcasing impactful research published this week. Morphing robot turns challenging terrain…
Muser NewsDeskMuser NewsDeskMarch 3, 2025 Full article
Image: brown turtle swimming underwater
UCF Biologist Continues Unraveling Mystery of Magnetic BacteriaScience

UCF Biologist Continues Unraveling Mystery of Magnetic Bacteria

UCF Biologist Robert Fitak recently created a refined database of magnetic bacteria and the animals they may reside in to further study how these bacteria…
SourceSourceJuly 10, 2024 Full article
Image: Aerial view of block plantations in Brazil (s. planting trees)
Tree planting patterns boost forest productivity and carbon cyclingScience

Tree planting patterns boost forest productivity and carbon cycling

By modeling different planting design strategies and species mixtures, researchers offer insights for sustainable forest management, reforestation, and climate change mitigation in a new paper…
SourceSourceJuly 9, 2025 Full article