Skip to main content

Recent research has revealed a promising natural process in glacial rivers and lakes that could help reduce methane emissions, a major contributor to global warming.

The study, led by Kristin Strock, Associate Professor of Environmental Studies at Dickinson College, explores how oxidation processes in these aquatic systems mitigate methane released from melting glaciers.

The findings are published in Scientific Reports.

The research team, composed of scientists from Dickinson College, the University of Wisconsin-Stout, and the U.S. Geological Survey, examined methane dynamics across three Icelandic glaciers. Their analysis focused on glacial runoff in rivers and lakes, where microbial communities consume methane through oxidation. This process was found to lower methane emissions from glacial meltwater by as much as 53%, according to the study.

kstrock methane climatechange res
Three potential sites for methane oxidation that could mitigate atmospheric methane from glacial environments: under ice oxidation in sub-glacial environments, oxidation within paraglacial lakes (a common feature in glacial landscapes), and oxidation within glacial rivers that transport geological material from the glacial surface. Credit: Strock et al (2024) | DOI: 10.1038/s41598-024-73041-3 | Scientific Reports

Strock highlighted the interdisciplinary nature of the project, which required integrating knowledge about land, ice, water, and air systems. “Studies that span the land, ice, water and air are rare, because it requires an interdisciplinary and full ecosystem kind of perspective,” Strock said. The research was initially proposed by Rachel Krewson, a former Dickinson College student, as part of her senior thesis in environmental science.

Methane is a potent greenhouse gas, second only to carbon dioxide in its contribution to climate change. Aquatic ecosystems, including those influenced by glacial melt, are major sources of methane emissions. However, the role of microbial methane oxidizers in mitigating these emissions has been understudied. The findings from this study add important data to a field where comprehensive measurements of glacial methane dynamics remain limited.

The researchers identified three key sites for oxidation in glacial systems: beneath the ice, within proglacial lakes, and in glacial meltwater rivers. Incorporating these processes into global methane budgets could provide more accurate assessments of emissions related to glacial melt.

Strock emphasized the importance of understanding methane dynamics in glacial ecosystems, especially as the pace of glacier loss accelerates with rising global temperatures. “I’m immensely proud of Rachel and our entire team of women researchers for doing this critical work in a field that’s still male-dominated,” she noted.

Associate Professor Kristin Strock discusses her climate research on glaciers in Iceland, finding that certain microbial processes in glacial melt can mitigate methane emissions, a potent greenhouse gas, and lessen climate impact. Strock highlights the collaborative experience of fieldwork in Iceland, emphasizing the benefits of involving students in pioneering research that may help inform future climate management strategies. Credit: Video by Dickinson College

***

This work received funding from the National Geographic Society and in-kind support from the U.S. Geological Survey, along with contributions from The Churchill Exploration Fund and the Dickinson College Research and Development Fund.

Journal Reference:
Strock, K.E., Krewson, R., Hayes, N.M. et al. ‘Oxidation is a potentially significant methane sink in land-terminating glacial runoff’, Scientific Reports 14, 23389 (2024). DOI: 10.1038/s41598-024-73041-3

Article Source:
Press Release/Material by Dickinson College
Featured image credit: European Union , Copernicus Sentinel-3 imagery

Image: Wildfire (s. forest, fire, climate)
Climate change squeezes global firefighting efforts as wildfire seasons collideClimate

Climate change squeezes global firefighting efforts as wildfire seasons collide

Increasing overlap of fire weather between Australia and North America complicates international firefighting efforts Summary: Climate change is driving a worrying trend: wildfire seasons in…
SourceSourceApril 29, 2025 Full article
Closeup shot of a snowflake on a glass from frost (s. freeze, climate, global warming)
Why deep freezes persist despite global warmingClimate

Why deep freezes persist despite global warming

Summary Study uncovers why record cold spells persist in a warming world Summary: Even as 2023 and 2024 set new global temperature records, deep freezes…
SourceSourceFebruary 13, 2025 Full article
Aerial Image: East Montpelier in July of 2024
Mapping floodplain types to improve flood prediction and resilienceClimate

Mapping floodplain types to improve flood prediction and resilience

What if the key to protecting communities from devastating floods lies in the landscape itself? UVM research explores the unique characteristics of floodplains, uncovering how…
SourceSourceApril 9, 2025 Full article