Skip to main content

By leveraging millions of time-stamped observations, researchers can identify plant rhythms and ecological patterns year-round.

By German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig

A research team led by the German Centre for Integrative Biodiversity Research (iDiv) and Leipzig University has developed an algorithm that analyses observational data from the Flora Incognita app. The novel approach described in Methods in Ecology and Evolution can be used to derive ecological patterns that could provide valuable information about the effects of climate change on plants.

Low Res AppUse2022 01 scaled Flora Incognita
The Flora Incognita app makes it easy to identify plants with a smartphone. Credit: Flora Incognita | CC BY

Plants are known to respond to seasonal changes by budding, leafing, and flowering. As climate change stands to shift these so-called phenological stages in the life cycle of plants, access to data about phenological changes – from many different locations and in different plants – can be used to draw conclusions about the actual effects of climate change. However, conducting such analyses require a large amount of data and data collection of this scale would be unthinkable without the help of citizen scientists. “The problem is that the quality of the data suffers when fewer people engage as citizen scientists and stop collecting data,” says first author Karin Mora, research fellow at Leipzig University and iDiv.

Mobile apps like Flora Incognita could help solve this issue. The app allows users to identify unknown wild plants within a matter of seconds. “When I take a picture of a plant with the app, the observation is recorded with the (exact) location as well as a time stamp,” explains co-author Jana Wäldchen from the Max Planck Institute for Biogeochemistry (MPI-BGC), who developed the app with colleagues from TU Ilmenau. “Millions of time-stamped plant observations from different regions have been collected by now.” Although satellite data also records the phenology of entire ecosystems from above, they do not provide information about the processes taking place on the ground.

Plants show synchronised response

The researchers developed an algorithm that draws on almost 10 million observations of nearly 3,000 plants species identified between 2018 and 2021 in Germany by users of Flora Incognita. The data show that each individual plant has its own cycle as to when it begins a flowering or growth phase. Furthermore, the scientists were able to show that group behaviour arises from the behaviour of individuals. From this, they were able to derive ecological patterns and investigate how these change with the seasons. For example, ecosystems by rivers differ from those in the mountains, where phenological events start later.

The algorithm also accounts for the observational tendencies of Flora Incognita users, whose data collection is far from systematic. For example, users record more observations on the weekend and in densely populated areas. “Our method can automatically isolate these effects from the ecological patterns,” Karin Mora explains. “Fewer observations don’t necessarily mean that we can’t record the synchronisation. Of course, there are very few observations in the middle of winter, but there are also very few plants that can be observed during that time.”

It is known that climate change is causing seasonal shifts – for example, spring is arriving earlier and earlier. How this affects the relationship between plants and pollinating insects and therefore potentially also food security is still being subject to further research. The new algorithm can now be used to better analyse the effects of these changes on the plant world.

This study was funded by the Deutsche Forschungsgemeinschaft (DFG; FZT-118) and the iDiv Flexpool.

More information: Karin Mora, Michael Rzanny, Jana Wäldchen, Hannes Feilhauer, Teja Kattenborn, Guido Kraemer, Patrick Mäder, Daria Svidzinska, Sophie Wolf, Miguel D. Mahecha, ‘Macrophenological dynamics from citizen science plant occurrence data’, Methods in Ecology and Evolution (2024); DOI: 10.1111/2041-210X.14365. iDiv Press Release / Material. Featured image credit: jcomp | Freepik

Muser Press – New Research Articles Week 49, 2024
A tree in the globe hovering in desert - abstract image (s. research, science, climate)
Muser Press – New Research Articles Week 49, 2024Science

Muser Press – New Research Articles Week 49, 2024

So you want to build a solar or wind farm? Here’s how to decide where David L. Chandler | MIT News - Deciding where to…
Muser NewsDeskMuser NewsDeskDecember 9, 2024 Full article
Wildfire trauma may impair long-term decision-making, study shows
Image: Firemen in Action Controlling a Fire
Wildfire trauma may impair long-term decision-making, study showsScience

Wildfire trauma may impair long-term decision-making, study shows

Researchers link climate-related trauma to changes in decision-making behavior and brain function in disaster survivors Summary: Experiencing a climate disaster like a wildfire may do…
SourceSourceApril 16, 2025 Full article
New compound discovered in drinking water raises questions about potential health risks
Image: Close up kid filling bottle with water
New compound discovered in drinking water raises questions about potential health risksScience

New compound discovered in drinking water raises questions about potential health risks

A collaborative effort by researchers in the United States and Switzerland has led to the identification of a previously unknown compound in chloraminated drinking water.…
Adrian AlexandreAdrian AlexandreNovember 23, 2024 Full article