Skip to main content

A research team led by Dr. Alexandre Pereira Santos at Ludwig Maximilian University of Munich has introduced a pioneering model designed to improve how scientists understand and respond to the growing convergence of global crises.

These include climate disasters, pandemics, species extinction, and violent conflicts – interacting risks that pose increasingly complex challenges in the Anthropocene, the current era shaped by human activity.

“We know that these risks cause damages and losses, which may become even greater when hazards interact and multiply their impacts,” explains Pereira Santos from LMU’s Department of Geography. For instance, the COVID-19 pandemic not only threatened public health, but also drove widespread economic hardship, revealing how multiple risks can exacerbate one another. Yet, the complexity of these interactions remains poorly understood, often eluding effective policy responses.

stages of multiple stressor res
The stages of the multiple-stressor framework. Credit: One Earth (2024) | DOI: 10.1016/j.oneear.2024.09.006

In a study recently published in One Earth, Pereira Santos and colleagues from Universität Hamburg and the Norwegian University of Science and Technology (NTNU) introduce a new framework that aims to bridge the gap.

Their approach connects climate and social science perspectives using a “translator” model. This innovative tool allows researchers to consider diverse factors and scales, without losing the richness of the data, which is crucial for crafting more inclusive and context-aware policies.

Before our approach, researchers often had to choose which aspects to consider in order to avoid information overload. Or they had to perform general analyses of multiple risks, regions, or social sectors, resulting in the loss of information,” says Pereira Santos. The new model resolves this issue by combining different sources of evidence into a coherent whole, preserving both the depth and breadth needed for comprehensive risk analysis.

This integrated method holds promise for shaping future policies that more effectively address the cascading impacts of crises, helping societies prepare for an increasingly interconnected world.

Journal Reference:
Alexandre Pereira Santos et al. ‘Integrating broad and deep multiple-stressor research: A framework for translating across scales and disciplines’, One Earth 7 (10), 1713 – 1726 (2024). DOI: 10.1016/j.oneear.2024.09.006

Article Source:
Press Release/Material by Ludwig Maximilian University of Munich (LMU)
Featured image credit: Freepik

Climate Science Digest: November 25, 2024
Small iceberg floating in ocean water under a bright sky with the Sun visible above - climate change effects (s. science, climate, Muser)
Climate Science Digest: November 25, 2024Science

Climate Science Digest: November 25, 2024

Wildfire smoke exposure linked to increased dementia risk A large-scale study involving more than 1.2 million members of Kaiser Permanente Southern California revealed a concerning…
Muser NewsDeskMuser NewsDeskNovember 26, 2024 Full article
Desert Power: Cactus Pear as a Promising Biofuel Crop
Desert Power: Cactus Pear as a Promising Biofuel CropScience

Desert Power: Cactus Pear as a Promising Biofuel Crop

By John Seelmeyer, University of Nevada, Reno As much of the world prepares for hotter and drier growing seasons as the result of climate change, a…
SourceSourceJune 24, 2024 Full article
Joint UK-China project aims to shield tea industry from climate change risks
Joint UK-China project aims to shield tea industry from climate change risksNewsScience

Joint UK-China project aims to shield tea industry from climate change risks

The global tea industry, valued in the tens of billions of dollars, is facing increasing pressure from climate change. As both the quality and quantity…
Adrian AlexandreAdrian AlexandreOctober 24, 2024 Full article