A research team led by Dr. Alexandre Pereira Santos at Ludwig Maximilian University of Munich has introduced a pioneering model designed to improve how scientists understand and respond to the growing convergence of global crises.

These include climate disasters, pandemics, species extinction, and violent conflicts – interacting risks that pose increasingly complex challenges in the Anthropocene, the current era shaped by human activity.

“We know that these risks cause damages and losses, which may become even greater when hazards interact and multiply their impacts,” explains Pereira Santos from LMU’s Department of Geography. For instance, the COVID-19 pandemic not only threatened public health, but also drove widespread economic hardship, revealing how multiple risks can exacerbate one another. Yet, the complexity of these interactions remains poorly understood, often eluding effective policy responses.

stages of multiple stressor res
The stages of the multiple-stressor framework. Credit: One Earth (2024) | DOI: 10.1016/j.oneear.2024.09.006

In a study recently published in One Earth, Pereira Santos and colleagues from Universität Hamburg and the Norwegian University of Science and Technology (NTNU) introduce a new framework that aims to bridge the gap.

Their approach connects climate and social science perspectives using a “translator” model. This innovative tool allows researchers to consider diverse factors and scales, without losing the richness of the data, which is crucial for crafting more inclusive and context-aware policies.

Before our approach, researchers often had to choose which aspects to consider in order to avoid information overload. Or they had to perform general analyses of multiple risks, regions, or social sectors, resulting in the loss of information,” says Pereira Santos. The new model resolves this issue by combining different sources of evidence into a coherent whole, preserving both the depth and breadth needed for comprehensive risk analysis.

This integrated method holds promise for shaping future policies that more effectively address the cascading impacts of crises, helping societies prepare for an increasingly interconnected world.

Journal Reference:
Alexandre Pereira Santos et al. ‘Integrating broad and deep multiple-stressor research: A framework for translating across scales and disciplines’, One Earth 7 (10), 1713 – 1726 (2024). DOI: 10.1016/j.oneear.2024.09.006

Article Source:
Press Release/Material by Ludwig Maximilian University of Munich (LMU)
Featured image credit: Freepik

Concept portrait of overstimulated person: repetition, confusion, belief
Repetition boosts belief in climate-skeptical claims, even among climate science endorsersScience

Repetition boosts belief in climate-skeptical claims, even among climate science endorsers

A single repetition increased the claims’ perceived truth for the strongest climate science supporters surveyed. By PLOS ONE Climate science supporters rated climate-skeptical statements as…
SourceSourceAugust 7, 2024 Full article
Image: Illustration - air pollution and wildfire smoke may contribute to memory loss in Alzheimer’s disease
Air pollution and wildfire smoke linked to memory loss in Alzheimer’sScience

Air pollution and wildfire smoke linked to memory loss in Alzheimer’s

Scientists discovered how a chemical modification of a key brain protein – potentially triggered by climate change-induced air pollution, pesticides, wildfires and processed meats –…
SourceSourceFebruary 28, 2025 Full article
Image: Desert (s. aquifer, climate change, water resources, remote sensing)
Airborne technology brings new hope to map shallow aquifers in Earth’s most arid desertsScience

Airborne technology brings new hope to map shallow aquifers in Earth’s most arid deserts

Airborne sounding radars can perform comprehensive mapping within a few hours compared to existing in-situ methods that would take a few years. Water shortages are…
SourceSourceMay 17, 2024 Full article