Methane, a potent greenhouse gas with a warming potential 25 times greater than carbon dioxide, has long posed challenges for precise atmospheric detection due to interference from water vapor and its volatile presence.

Now, researchers at the Max Planck Institute for the Science of Light (MPL) have introduced a cutting-edge ytterbium thin-disk laser technology that promises transformative advancements in monitoring atmospheric pollutants.

This breakthrough was detailed in APL Photonics.

Fattahi Anni Li
Anni Li, Doctoral Student in the research group ‘Femtosecond Fieldoscopy’ led by Dr. Hanieh Fattahi. Credit: Susanne Viezens

The innovative system harnesses the power of ytterbium thin-disk lasers to drive an optical parametric oscillator (OPO), producing high-power, stable pulses in the short-wave infrared (SWIR) spectral range. This spectral window is uniquely suited for detecting pollutants like methane, as it minimizes interference from water vapor while maximizing sensitivity to target gases.

The technology enables researchers to analyze a wide variety of atmospheric compounds with unprecedented precision, offering new insights into greenhouse gas dynamics and the broader impacts of climate change.

“The output of our laser system can be scaled to higher average and peak power, due to the power scalability of ytterbium thin-disk lasers,” said Anni Li, a PhD student at MPL. “Employing the system for the accurate detection of pollutants in real time allows deeper insights into greenhouse gas dynamics. This could help address some of the challenges we face in understanding climate change.”

The laser operates by producing high-power, femtosecond pulses at megahertz repetition rates, which are then converted to the SWIR range using an OPO. The OPO enhances the precision of pollutant detection through high-frequency modulation, improving the signal-to-noise ratio in spectroscopic applications.

This stability and tunability make the system a game-changer for advanced methods like field-resolved spectroscopy and femtosecond fieldoscopy, which are crucial for analyzing atmospheric compounds with minimal interference.

“This new technology is not only applicable to atmospheric monitoring and gas sensing, but also holds potential for other scientific fields such as earth-orbit communication, where high-bandwidth modulated lasers are required,” said Dr. Hanieh Fattahi, the lead researcher on the project.

The team plans to refine the system further, aiming to create a versatile platform capable of real-time pollutant monitoring and supporting optical communications in earth-space systems. By addressing long-standing challenges in greenhouse gas detection, this laser technology could play a pivotal role in understanding and mitigating the impacts of climate change while opening doors to new scientific applications.

Journal Reference:
Anni Li, Mehran Bahri, Robert M. Gray, Seowon Choi, Sajjad Hoseinkhani, Anchit Srivastava, Alireza Marandi and Hanieh Fattahi, ‘0.7 MW Yb:YAG pumped degenerate optical parametric oscillator at 2.06 μm’, APL Photonics 9, 100808 (2024). DOI: doi.org/10.1063/5.0230388

Article Source:
Press Release/Material by Max Planck Institute for the Science of Light
Featured image: The optical parametric oscillator pump by ytterbium thin disk laser. Credit: Axel Griesch

Small iceberg floating in ocean water under a bright sky with the Sun visible above - climate change effects (s. science, climate, Muser)
Climate Science Digest: April 24, 2025Science

Climate Science Digest: April 24, 2025

Explore the latest insights from top science journals in the Muser Press daily roundup, featuring impactful research on climate change challenges. In brief: We should…
Muser NewsDeskMuser NewsDeskApril 24, 2025 Full article
Discoloration plagues Alaska’s pristine rivers: A consequence of rapid Arctic warmingScience

Discoloration plagues Alaska’s pristine rivers: A consequence of rapid Arctic warming

Permafrost thaw unveils startling changes in water quality, posing threats to ecosystems. In a concerning revelation, Alaska's Arctic region is grappling with a striking environmental…
Adrian AlexandreAdrian AlexandreJanuary 16, 2024 Full article
Image: Silhouette of Trees in the Burning Forest
Large wildfires create weather that favors more fireClimateScience

Large wildfires create weather that favors more fire

By Jules Bernstein, University of California - Riverside A new UC Riverside study shows soot from large wildfires in California traps sunlight, making days warmer…
SourceSourceJune 18, 2024 Full article