Due to the growing reality of global warming and climate change, there is increasing uncertainty around meteorological conditions used in energy assessments of buildings.

Existing methods for generating meteorological data do not adequately handle the interdependence of meteorological elements, such as solar radiation, air temperature, and absolute humidity, which are important for calculating energy usage and efficiency.

To address this challenge, a research team at Osaka Metropolitan University’s Graduate School of Human Life and Ecology – comprising Associate Professor Jihui Yuan, Professor Emeritus Kazuo Emura, Dr. Zhichao Jiao, and Associate Professor Craig Farnham – developed an innovative evaluation method. This method utilizes a statistical model to represent the interdependence of multiple factors, facilitating the generation of probabilistic meteorological data.

The researchers modeled the temperature, solar radiation, and humidity at noon each day, and then gradually expanded this to 24 hours and 365 days to generate a year’s worth of meteorological data.

The most notable aspect of this method is that it takes into account the interdependence of meteorological variables and improves the accuracy of building energy simulations. Their generated data was almost identical to the original data set, proving the method’s accuracy.

“We hope this method will lead to the promotion of energy-efficient building design that can respond to various weather conditions,” stated Professor Yuan.

The findings were published in Scientific Reports.

Journal Reference:
Jiao, Z., Yuan, J., Farnham, C., Emura, K., ‘Multivariate stochastic generation of meteorological data for building simulation through interdependent meteorological processes’, Scientific Reports 14, 24927 (2024). DOI: 10.1038/s41598-024-75498-8

Article Source:
Press Release/Material by Osaka Metropolitan University
Featured image: Meteorological data predictions. Incorporating environmental factors into building efficiency assessments is necessary as the effects of climate change increase. Credit: Osaka Metropolitan University

Image: Dirt road in the middle of forest trees on a sunny day
Rising environmental stressors threaten resilience of ecosystems, study revealsClimate

Rising environmental stressors threaten resilience of ecosystems, study reveals

A new international study led by the Institute of Natural Resources and Agrobiology of Seville (IRNAS-CSIC) under the Spanish National Research Council (CSIC) has revealed…
Adrian AlexandreAdrian AlexandreAugust 23, 2024 Full article
Adult females of spongy moth
Spongy moth outbreaks worsen as climate change accelerates forest damageClimate

Spongy moth outbreaks worsen as climate change accelerates forest damage

New models predict rising temperatures and changing precipitation patterns will lead to an increase in invasive spongy moth surge, already having a profound effect on…
SourceSourceJanuary 7, 2025 Full article
Night-time heat significantly increases the risk of strokeClimateScience

Night-time heat significantly increases the risk of stroke

By Helmholtz Munich In a recent study, researchers from Helmholtz Munich and the Augsburg University Hospital show that nocturnal heat significantly increases the risk of…
SourceSourceMay 22, 2024 Full article