Due to the growing reality of global warming and climate change, there is increasing uncertainty around meteorological conditions used in energy assessments of buildings.

Existing methods for generating meteorological data do not adequately handle the interdependence of meteorological elements, such as solar radiation, air temperature, and absolute humidity, which are important for calculating energy usage and efficiency.

To address this challenge, a research team at Osaka Metropolitan University’s Graduate School of Human Life and Ecology – comprising Associate Professor Jihui Yuan, Professor Emeritus Kazuo Emura, Dr. Zhichao Jiao, and Associate Professor Craig Farnham – developed an innovative evaluation method. This method utilizes a statistical model to represent the interdependence of multiple factors, facilitating the generation of probabilistic meteorological data.

The researchers modeled the temperature, solar radiation, and humidity at noon each day, and then gradually expanded this to 24 hours and 365 days to generate a year’s worth of meteorological data.

The most notable aspect of this method is that it takes into account the interdependence of meteorological variables and improves the accuracy of building energy simulations. Their generated data was almost identical to the original data set, proving the method’s accuracy.

“We hope this method will lead to the promotion of energy-efficient building design that can respond to various weather conditions,” stated Professor Yuan.

The findings were published in Scientific Reports.

Journal Reference:
Jiao, Z., Yuan, J., Farnham, C., Emura, K., ‘Multivariate stochastic generation of meteorological data for building simulation through interdependent meteorological processes’, Scientific Reports 14, 24927 (2024). DOI: 10.1038/s41598-024-75498-8

Article Source:
Press Release/Material by Osaka Metropolitan University
Featured image: Meteorological data predictions. Incorporating environmental factors into building efficiency assessments is necessary as the effects of climate change increase. Credit: Osaka Metropolitan University

Satellite Image: The El Niño Southern Oscillation drives major weather patterns across the globe
Geoengineering method could disrupt El Niño, study warnsClimate

Geoengineering method could disrupt El Niño, study warns

UC Santa Barbara scientists find cloud seeding could destabilize El Niño, raising concerns about geoengineering impacts Summary: A modeling study in the journal Earth’s Future…
SourceSourceSeptember 17, 2025 Full article
Image: Erzberg mine, Austria
Mineral shortages could threaten global low-carbon transition, study findsClimate

Mineral shortages could threaten global low-carbon transition, study finds

Climate change: Mineral shortages could limit the low-carbon transition Summary: The shift to a low-carbon energy future could be slowed by shortages of key minerals,…
SourceSourceAugust 10, 2025 Full article
Image: green fields on hills surrounded by a green forest (s. nature)
Towards a shared future with natureClimate

Towards a shared future with nature

The Nature Relationship Index offers a new way of of measuring how countries use and protect natural resources Summary: A group of international experts has…
SourceSourceJune 30, 2025 Full article