Skip to main content

Due to the growing reality of global warming and climate change, there is increasing uncertainty around meteorological conditions used in energy assessments of buildings.

Existing methods for generating meteorological data do not adequately handle the interdependence of meteorological elements, such as solar radiation, air temperature, and absolute humidity, which are important for calculating energy usage and efficiency.

To address this challenge, a research team at Osaka Metropolitan University’s Graduate School of Human Life and Ecology – comprising Associate Professor Jihui Yuan, Professor Emeritus Kazuo Emura, Dr. Zhichao Jiao, and Associate Professor Craig Farnham – developed an innovative evaluation method. This method utilizes a statistical model to represent the interdependence of multiple factors, facilitating the generation of probabilistic meteorological data.

The researchers modeled the temperature, solar radiation, and humidity at noon each day, and then gradually expanded this to 24 hours and 365 days to generate a year’s worth of meteorological data.

The most notable aspect of this method is that it takes into account the interdependence of meteorological variables and improves the accuracy of building energy simulations. Their generated data was almost identical to the original data set, proving the method’s accuracy.

“We hope this method will lead to the promotion of energy-efficient building design that can respond to various weather conditions,” stated Professor Yuan.

The findings were published in Scientific Reports.

Journal Reference:
Jiao, Z., Yuan, J., Farnham, C., Emura, K., ‘Multivariate stochastic generation of meteorological data for building simulation through interdependent meteorological processes’, Scientific Reports 14, 24927 (2024). DOI: 10.1038/s41598-024-75498-8

Article Source:
Press Release/Material by Osaka Metropolitan University
Featured image: Meteorological data predictions. Incorporating environmental factors into building efficiency assessments is necessary as the effects of climate change increase. Credit: Osaka Metropolitan University

Image: Iceberg, glacial lake
Tipping risks from overshooting 1.5 °C can be minimised if warming is swiftly reversedClimate

Tipping risks from overshooting 1.5 °C can be minimised if warming is swiftly reversed

By Potsdam Institute for Climate Impact Research (PIK) Human-made climate change can lead to a destabilisation of large-scale components of the Earth system such as…
SourceSourceAugust 2, 2024 Full article
Aerial Image: East Montpelier in July of 2024
Mapping floodplain types to improve flood prediction and resilienceClimate

Mapping floodplain types to improve flood prediction and resilience

What if the key to protecting communities from devastating floods lies in the landscape itself? UVM research explores the unique characteristics of floodplains, uncovering how…
SourceSourceApril 9, 2025 Full article
Every last drop: zero-waste water builds water resilienceClimate

Every last drop: zero-waste water builds water resilience

By HELEN MASSY-BERESFORD | Horizon, the EU Research and Innovation magazine The 34 dairy cows chewing the cud on a floating platform in the port of…
SourceSourceJuly 6, 2024 Full article