Skip to main content

Clues found relating repair of photosynthetic protein complex to how plants survive in colder regions.

Osaka Metropolitan University – Plants need light to grow, but too much light can induce damage to the photosynthetic complex known as photosystem II. It is known that plants adapted to growing under full sun repair this light-induced damage more. But this repair activity slows down in colder temperatures.

An Osaka Metropolitan University-led international research team has now found some clues to how plants survive in colder regions. The study is published in the journal Plant, Cell & Environment.

chlorophyll fluorescence res
Chlorophyll fluorescence measures plants’ ability to repair photoinhibition. Some of the light energy used in photosynthesis is emitted as fluorescence. Photoinhibition and its repair can be measured by the behavior of fluorescence. Credit: Osaka Metropolitan University

Graduate School of Science Associate Professor Riichi Oguchi and colleagues from Australia, Austria, and Japan grew Arabidopsis thaliana (commonly called thale cress) using ecotypes from around the world. They were all grown at 22°C, before some were kept as a control group at that temperature and others were exposed to colder weather at 12°C for three days. The plants were then subjected to 5°C conditions in this experiment.

Damage to photosynthesis capacity by light, known as photoinhibition, is repaired at a certain rate in plants. The control Arabidopsis thaliana showed no difference among ecotypes in the rate of repair at 5°C, but the plants acclimated to the cold for three days showed an increased photoinhibition repair rate and the extent of the increase was higher in the ecotypes from colder regions.

“What we found in this experiment is that plants acclimated in cold temperatures increase their rate of photoinhibition repair in the cold, and the acclimation capacity is higher in the ecotypes from colder regions,” explained Professor Oguchi. “But during the warmer seasons, as suggested by the control group, the plants do not increase the rate as the cost of such repair capacity is high.”

Journal Reference:
Riichi Oguchi, Soichiro Nagano, Ana Pfleger, Hiroshi Ozaki, Kouki Hikosaka, Barry Osmond, Wah Soon Chow, ‘An Intraspecific Negative Correlation Between the Repair Capacity of Photoinhibition of Cold Acclimated Plants and the Habitat Temperature’, Plant Cell & Environment (2024). DOI: 10.1111/pce.15270

Article Source:
Press Release/Material by Osaka Metropolitan University
Featured image credit: Johannes Plenio | Pexels

Antarctic ice shelves hold twice as much meltwater as previously thought
Aerial image of Antarctic iceberg
Antarctic ice shelves hold twice as much meltwater as previously thoughtClimateScience

Antarctic ice shelves hold twice as much meltwater as previously thought

By University of Cambridge Slush – water-soaked snow – makes up more than half of all meltwater on the Antarctic ice shelves during the height…
SourceSourceJune 27, 2024 Full article
Image of the day: Los Angeles wildfires leave vast scars visible from space
Satellite image: Los Angeles wildfires, California, USA
Image of the day: Los Angeles wildfires leave vast scars visible from spaceNews

Image of the day: Los Angeles wildfires leave vast scars visible from space

As of 13 January 2025, three major wildfires have devastated Los Angeles, California, since igniting on 7 January. Strong winds continue to fuel the flames,…
Muser NewsDeskMuser NewsDeskJanuary 13, 2025 Full article
Muser Press – New Research Articles Week 48, 2024
A tree in the globe hovering in desert - abstract image (s. research, science, climate)
Muser Press – New Research Articles Week 48, 2024Science

Muser Press – New Research Articles Week 48, 2024

Innovative approach highlights marine heatwaves’ impacts on seagrass ecosystems Seagrass meadows, essential to marine biodiversity and ecosystem services, are increasingly threatened by climate change, especially…
Muser NewsDeskMuser NewsDeskDecember 1, 2024 Full article