A study by researchers at Peking University’s Institute of Carbon Neutrality has unveiled how plants and animals respond differently to climate change in their seasonal biological cycles, or phenology. This large-scale analysis, led by Piao Shilong and Zhang Yao, highlights increasing mismatches between the two groups, raising concerns about the stability of ecosystems.

Published in Nature Ecology & Evolution, the study compiled an extensive dataset of phenological observations, including nearly half a million time series for plants (covering 1,629 species or genera across 248 events) and over 43,000 for animals, covering numerous species and events across four decades.

Global distribution of phenological records (s. climate, plants, animals)
Global distribution of phenological records. a. Distribution of plant phenology observation sites; b. Distribution of animal phenology observation sites; c. Plant species; d. Plant phenology categories; e. Animal classes; f. Animal phenology categories. Credit: Lang et al. (2024) | DOI: 10.1038/s41559-024-02597-0 | Nature Ecology & Evolution

The findings show that plants exhibit a stronger response to warming, with later seasonal events such as fruiting advancing significantly over time. Nearly 30% of these changes were influenced by earlier events in the same growing season, suggesting that warming effects accumulate and amplify as seasons progress.

By contrast, animals displayed weaker and more variable phenological shifts. While insects showed slight advancements, the timing of seasonal activities in birds, mammals, and amphibians was often delayed. This variability stems from animals’ reliance on environmental cues, such as temperature or resource availability, which weakens the link between successive phenological events.

The research highlights that these divergent mechanisms may lead to increasing asynchrony between plants and animals. For instance, earlier flowering in plants might not align with the activity of pollinators, potentially disrupting trophic interactions. Such imbalances could ripple through ecosystems, affecting their overall functioning and stability.

The paper, co-authored by Lang Weiguang, Piao Shilong, and Zhang Yao, indicates the need to understand these phenological divergences to predict ecosystem responses to ongoing climate warming. The researchers emphasize that addressing such asynchrony is crucial to safeguarding ecological balance in a warming world.

Journal Reference:
Lang, W., Zhang, Y., Li, X. et al. ‘Phenological divergence between plants and animals under climate change’, Nature Ecology & Evolution (2024). DOI: 10.1038/s41559-024-02597-0

Article Source:
Press Release/Material by Peking University
Featured image credit: kuritafsheen77 | Freepik

Image: Earth seen from space (s. global warming, typhoon, storm)
El Niño forecasts extended to 18 months with innovative physics-based modelClimateScience

El Niño forecasts extended to 18 months with innovative physics-based model

By University of Hawaii at Manoa Across Asia, the Pacific Ocean, and the Americas, El Niño Southern Oscillation (ENSO) brings variations in winds, weather, and…
SourceSourceJune 26, 2024 Full article
Image: rain drops on glass window (s. climate, Precipitation Whiplashes)
Warming climate may accelerate weather instabilityClimate

Warming climate may accelerate weather instability

A recent study by The Hong Kong University of Science and Technology (HKUST) reveals a looming climate crisis: the world could face heightened risks of…
SourceSourceJune 25, 2025 Full article
Aerial view of container cargo ship in sea - shipping emissions
Shipping reforms linked to 2023 temperature riseClimate

Shipping reforms linked to 2023 temperature rise

The summer of 2023 saw an unexpected rise in global temperatures, which caught many climate scientists by surprise. While global warming driven by greenhouse gases…
Muser NewsDeskMuser NewsDeskJanuary 14, 2025 Full article