Skip to main content

By Free University of Brussels

In a warmer climate, summers warm much faster than winters. That is the conclusion of research into fossil shells by earth scientist Niels de Winter. With this knowledge we can better map the consequences of current global warming in the North Sea area.

De Winter, affiliated with the Department of Earth Sciences at Vrije Universiteit Amsterdam and the AMGC research group at Vrije Universiteit Brussel, measured alongside colleagues from institutions such as the Institute for Natural Sciences in Brussels the chemical composition of fossil shells from Antwerp, Belgium. Those shells originate from molluscs such as oysters, cockles, and scallops found during the construction works of the Kieldrecht Lock. The molluscs lived lived during the Pliocene, approximately three million years ago, in the North Sea, which at that time also covered parts of Flanders and the Netherlands. The shells grew layer by layer, much like tree rings or fingernails, and stored very detailed information in their shell during their lifetime.

Snapshot of the seasons

During the Pliocene, the Earth was on average 2.5 to 3 degrees Celsius warmer than it is now. In their study, published in Science Advances, the researchers took a ‘snapshot’ of the climate at that time to gain insight into the difference between the seasons in a warmer climate.

Rare heavy isotopes

They use the ‘clumped isotope analysis’ method. With this method, researchers study the composition of shells in even more detail. They do this by measuring the extent to which rare heavy isotopes of both oxygen and carbon occur in the same carbonate from which shells are built. These isotopes are more common in shells that formed in colder waters. As a result, the measurements can be used to reconstruct the temperature in which the shells were formed. This method is more accurate than conventional methods for temperature reconstructions because it does not rely on assumptions about the composition of the seawater in which the mollusks grew.

Summers heat up more than winter

The key insight is that summers warm much more than winters in a warmer climate such as the Pliocene. While winters became about 2.5 degrees warmer, temperatures during summer were about 4.3 degrees higher. The researchers see a similar result in models projecting future climate, which predict roughly the same amount of warming for the year 2100.

The study gives us a glimpse of what the climate in Europe will be like if we continue our current trend towards a warmer world. De Winter: “We will likely experience stronger temperature differences between summer and winter, and the chance of heatwaves during the summer will increase.”

This article by Free University of Brussels is republished under a Creative Commons Attribution 4.0 International License. Read the original article here.

(More information: Niels de Winter, ‘Amplified seasonality in western Europe in a warmer world’, Science Advances (2024). DOI: 10.1126/sciadv.adl6717. Featured image: Pygocardia rustica, bivalve used in the study; Credit: Doris Smudde | CC BY 4.0)

Fiji coral study reveals Pacific’s highest temperatures in over 600 years
Fiji coral study reveals Pacific’s highest temperatures in over 600 yearsScience

Fiji coral study reveals Pacific’s highest temperatures in over 600 years

International study uses data obtained from the analysis of the honeycomb coral Diploastrea heliopora to reconstruct sea surface temperatures of the Fijian archipelago. The sea…
SourceSourceSeptember 18, 2024 Full article
‘Marine Identity’ can help save the ocean
‘Marine Identity’ can help save the oceanScience

‘Marine Identity’ can help save the ocean

Research led by Dr. Pamela Buchan from the University of Exeter reveals that people's deep connection to the ocean, referred to as "marine identity," can…
Adrian AlexandreAdrian AlexandreSeptember 17, 2024 Full article
Fraunhofer IAF’s low-noise amplifiers enhance Arctic Weather Satellite’s capabilities
Fraunhofer IAF’s low-noise amplifiers enhance Arctic Weather Satellite’s capabilitiesScience

Fraunhofer IAF’s low-noise amplifiers enhance Arctic Weather Satellite’s capabilities

The European Space Agency’s (ESA) Arctic Weather Satellite (AWS) is set to revolutionize weather forecasting and climate monitoring, particularly in the Arctic, by collecting highly…
Adrian AlexandreAdrian AlexandreSeptember 17, 2024 Full article