Skip to main content

By American Society for Microbiology

Antibiotics in the uppermost water surface, known as the sea surface microlayer, can significantly affect the number of bacteria present and contribute to the adaptation of marine bacteria against widely used antibiotics. In new research presented at ASM Microbe, scientists directly assessed the potential effects of antibiotics on bacterial diversity in Jade Bay, Southern North Sea, Germany.

The researchers tested the susceptibility and resistance of marine bacteria to ofloxacin, clindamycin, clarithromycin, and novobiocin since these antibiotics were generally found in this coastal water. They observed that 70% of marine bacteria had developed resistance to ofloxacin, 95% to clindamycin, 58% to clarithromycin, and 100% to novobiocin, which had the highest concentration in the environment. These findings highlight the urgency of antibiotic resistance in marine bacteria.

The study found more bacteria in seawater samples collected from the sea surface microlayer than in the water below, even when different amounts of the antibiotic ciprofloxacin were added to the samples. When the level of ciprofloxacin increased, the number of bacteria in seawater samples decreased. However, over time, the bacteria in seawater samples started to grow when there were high levels of ciprofloxacin (50 and 100 ng mL-1), which shows that they were becoming resistant.

In the presence of a high level of ciprofloxacin, the team found 97 strains of bacteria distributed over fourteen bacterial genera. Fifty-seven of these bacterial strains can cause infections in humans, especially those with weakened immune systems, while forty are marine bacteria that cannot infect humans. The team also found antibiotics— including ofloxacin, clindamycin, clarithromycin, lincomycin, tylosin, novobiocin, erythromycin, trimethoprim, sulfamethoxazole, roxithromycin, and chloramphenicol —to be present in the seawater samples, particularly in those collected from the sea surface microlayer of Jade Bay. However, only a few were found in the water below.

“Our results emphasize the collective effort needed to reduce the potential ecological effects of introducing antibiotics into coastal waters because antibiotics may accumulate more in the sea surface microlayer, affect the bacteria diversity, and lead to the adaptation of marine bacteria to antibiotics,” said Adenike Adenaya, Doctoral Graduate at the Carl von Ossietzky University of Oldenburg.

More information: The American Society for Microbiology is one of the largest professional societies dedicated to the life sciences and is composed of 36,000 scientists and health practitioners. ASM Microbe is the annual meeting of the American Society for Microbiology, held June 13-17, 2024, in Atlanta, Georgia. Featured image credit: Wassily Kandark | Pexels

3D globe graphic (s. climate)
Biden orders 1,000 troops to boost storm reliefNews

Biden orders 1,000 troops to boost storm relief

Washington, United States (AFP) - US President Joe Biden on Wednesday ordered deployment of up to 1,000 troops to flood-ravaged North Carolina to boost emergency…
SourceSourceOctober 2, 2024 Full article
Image: International event logo
USP and FAPESP bring innovative technologies to international startup fair in FranceNews

USP and FAPESP bring innovative technologies to international startup fair in France

VivaTech is one of Europe's leading technology and startup events; USP and FAPESP will take researchers and disruptive technologies to the event in the areas…
SourceSourceJune 6, 2025 Full article
Women shaping the future of sustainabilityNews

Women shaping the future of sustainability

By Yuen Yoong Leong, UN Sustainable Development Solutions Network, Sunway University in Kuala Lumpur | 360info Inspiring women are driving sustainable solutions and empowering communities,…
SourceSourceSeptember 20, 2024 Full article